
stil
l in

pro
gre

ss
Beampy
User guide

Online documentation

Jonathan Peltier

PAIP Master, Lorraine University

January 14, 2020

https://beampy.readthedocs.io/

Acknowledge
I want to thanks Pr. Nicolas Fressengeas - responsible of the master, director of the Laboratory
MOPS and teacher in the course where this program were developed - for proposing interesting
projects in his classes and to let us freely pursue our goals.

I also want to thanks Marcel Soubkovsky for initializing the interface in its early stage and
consequently decreases the needed time to fully developed it.

Abstract
This software is based on Python 3.7.4. and has been tested on Spyder 3.7. It uses Beam
Propagation Method (BPM) to compute beams propagation into a linear or non-linear medium.

It allows to choose different shape for the guides and beams: flat-top, Gaussian or even
mode-based for the beam.

The beams can be propagate into free space, an array of guides or into a system of two
curved guides and a straight central one.

In addition, a kerr effect can be introduce to take into account the refractive index variation
with the beam intensity.

It is also possible to add an area where the beam is absorbed through looses.
This software is composed of 3 main python files: bpm.py that contain the Bpm class and

thus, all the needed methods to compute the propagation, interface.py which is created using
Qt Designer and user_interface.py that connect the Bpm methods to the interface and plot
the outputs such as the power through the propagation.

page 2/16 Beampy user guide

CONTENTS CONTENTS

Contents
1 bpm module 4

1.1 Bpm class summary . 4
1.2 Windows variables . 5
1.3 Guides . 5
1.4 Beams . 6

1.4.1 Gaussian . 6
1.4.2 Mode based . 7

1.5 Compute . 8
1.6 Kerr . 8
1.7 looses . 9

2 User interface module 10
2.1 UserInterface class summary . 10
2.2 calculate guide . 12
2.3 calculate light . 12
2.4 calculate propagation . 12
2.5 Add plot . 12
2.6 Open and save file . 12
2.7 Create beam . 12

3 Validation 12
3.1 Free space . 12
3.2 Coupled mode theory . 13
3.3 Kerr effect . 13

4 Approximations 13
4.1 In Beampy . 13
4.2 Not in Beampy . 13

5 Beam Propagation Method (BPM) 15

Beampy user guide page 3/16

1 BPM MODULE

1 bpm module
This section describe the essentials methods of the class Bpm used in Beampy and their relation
to the interface.

1.1 Bpm class summary

1 bpm = Bpm(width , no , delta_no ,
2 length_z , dist_z , nbr_z_disp ,
3 length_x , dist_x)
4 [length_z , nbr_z , nbr_z_disp , length_x , nbr_x , x] = bpm. create_x_z ()
5

6 shape = bpm. squared_guide ()
7 shape = bpm. gauss_guide ()
8 [peaks , dn] = bpm. create_guides (shape , nbr_p , p , o f f s e t_gu ide=o f f s e t_gu ide)
9 [peaks , dn] = bpm. create_curved_guides (shape , curve , hal f_delay , d i s tance_factor

, o f f s e t_gu ide=o f f s e t_gu ide)
10

11 f i e l d _ i = bpm. gauss_l ight (fwhm_i , o f f s e t _ l i g h t=o f f s e t _ l i g h t _ i)
12 f i e l d _ j = bpm. squared_l ight (fwhm_j , o f f s e t _ l i g h t=o f f s e t _ l i g h t _ j)
13 [f i e ld_k , h , gamma, beta] = bpm. mode_light (mode , lo , o f f s e t _ l i g h t=offset_beam_k)
14 [f i e l d _ l , h , gamma, beta] = bpm. all_modes (lo , o f f s e t _ l i g h t=o f f s e t _ l i g h t _ l)
15

16 f i e l d = [f i e l d _ i , f i e l d _ j , f i e ld_k , f i e l d _ l]
17 [progress_pow] = bpm. i n i t _ f i e l d (f i e l d , theta_ext , i r rad , l o)
18

19 [lost_beg , lost_end] = bpm. l o s s e s _ p o s i t i o n (guide_lost , width_lost)
20

21 [progress_pow] = bpm. main_compute (ch i3=chi3 , ke r r=kerr , kerr_loop=kerr_loop ,
variance_check=variance_check , alpha=alpha , lost_beg=lost_beg , lost_end=
lost_end)

Code Listing 1: Bpm class called by the interface

The user_interface.py file call the Bpm class from bpm.py to compute the beams propaga-
tion and follows the above code listing 1.

The list bellow summarizes those methods but, a thorough explanation can be found right
afterwards.

• (lines 1-3) The first action consists of initializing the Bpm class.

• (line 4) The windows variables are created with the create_x_z method, which return the
corrected values of the variables: length_z, nbr_z_disp, length_x due to the sampling
and return the new variables: nbr_z, nbr_x, x.

• The guide shape are defined by the shape variable, which is a lambda function.
(line 6) The bpm.squared_guide() method return a squared modulation of the refractive
index from -1

2width to 1
2width center on 0.

(line 7) The bpm.gauss_guide(P) method return a P order super-Gaussian modulation of
the refractive index center on 0 with a waist=1

2width at 1/e.

• The guides are defined by one of the following methods:
(line 8) bpm.create_guides which consist of an array of guides.
(line 9) bpm.create_curved_guides which consist of two curved guides and a linear one.

page 4/16 Beampy user guide

1 BPM MODULE 1.2 Windows variables

• The beam can be:
(line 11) Gaussian with bpm.gauss_light
(line 12) flat-top with bpm.squared_light
(line 13) based on a possible mode for a squared guide with bpm.mode_light.
(line 14) based on all possibles modes with bpm.all_modes.

• (line 18) The bpm.init_field combines the fields if several were given (line 17). It put the
V/m unity to the fields using the irrad intensity in W/m2. It also multiply the field by
the initial phase, depending on the exterior angle, define from the normal to the interface
air/cladding. It create the free space matrix phase_mat describing the propagation of the
beam without refractive index modulation. It also create the refractive index modulation
nl_mat. Finally, it return the initial power that will be used inside Bpm to compute the
propagation.

• (line 20) bpm.losses_position can be used to define an area or areas (by changing the
code, not from the interface) where looses occurs.

• (line 22) bpm.main_compute is the final method that realized the propagation and return
the power over x and z. It calls the bpm_compute for the BPM method, calls absorption
to add the looses and calls kerr_effect to take non-linearity into account.

1.2 Windows variables
The x variable is defined as the array: [-1

2 length_x,.,0,.,
1
2 length_x - dist_x] with nbr_x a even

number of points and dist_x step between each points. This choice decrease the computation
time by having a even number of points but introduce a asymmetry between negative and
positive positions and the length_z variable correspond actually to length_x - dist_x. Note
that this method changes the length_x variables to match a even number of point for the exact
dist_x value.

Inside the Bpm class, the nbr_z_disp correspond to the number of points over z, including
the first point define by the initial field. However, in the MainApp class of the user_interface.py
file, nbr_z_disp is the number of point compute, without the initial point. So, in this class,
one is added to its value when it’s necessary to manipulate the real number of points over z.
The reason behind this difference is that the MainApp class interact with the interface. And,
the input value in the interface correspond to the number of point compute and not the real
number of points over z. So, if Bpm returns the value+1, the interface will add 1 indefinitely
for each computation.

To recap, the dist_x, dist_z variables are uses to redefine the lengths and number of points
variables. Then, the new values are displayed on the interface.

1.3 Guides
The bpm.gauss_guide(P)(x) method return the normalized refractive index at the position x
centered on zero for a P order super-Gaussian modulation. The guide width is defined such as
∆n = 1/e for w0 = 1

2width (figure 1).

E(0) = exp
(
−(x
w0

)2P
)

(1)

With P the order of the super-Gaussian beam, 1 correspond to a regular gaussian beam and
4 correspond to the usual super-Gaussian beam.

Beampy user guide page 5/16

1 BPM MODULE 1.4 Beams

15 10 5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

Example of different guides
Gaussian
super-Gaussian P=4
super-Gaussian P=10
Flat-top
width/2
1/e

Figure 1: Waist of the guide defined as the width/2 at 1/e. From examples.example_guides_x()

Exemple: bpm.gauss_guide(4)(0)=1 and bpm.gauss_guide(4)(width/2)=e−1

The 1/e convention has been chosen, for the guides, because this value allows to have the
same width definition for squared, Gaussian or super-Gaussian guides.

The super-Gaussian guide at the order P=4 is preferred when using BPM because its shape
is closed to the shapes obtained in laboratory with lithography and also because this shape
don’t have the numerical problems caused by the flat-top guide.

Thus, bpm.squared_guide()(x) must be used carefully because the BPM approximations
implied smooth index variations to be valid.

Once the shape has been chosen, the user must define the z dependency of the guides between
the two available methods: bpm.create_guides and bpm.create_curved_guides methods.

The former return an array of guides with a given shape and the latter return two curved
guides with a central linear guide between. The figure 2 represent the two possibles configura-
tions.

Noes that the offset is done by rolling the array and not by computing the x − x0 values.
This allow to compute one guide and to clone it for any offset needed. But, this choice forced
the guide to exist inside the windows and to have the left values coming from the right side if
a offset is set. However, this definition allows to reduce drastically the compute time needed
for the curved array and for, in less measure, the array of guide. Indeed, the old definition
(compute Gauss guides for every z with the proper offset) takes 16s for a given configuration,
and drop to 1.6s with the roll definition.

1.4 Beams
1.4.1 Gaussian

The bpm.gauss_light(fwhm, offset_light=x0) method return a Gaussian beam with an x0 offset
from the center with a full width at half maximum (fwhm) define for the intensity (|E2|) such
as w0 = fwhm /

√
2 ∗ ln(2) at 1/e for the field and 1/e2 for the intensity (figure 3).

page 6/16 Beampy user guide

1 BPM MODULE 1.4 Beams

(a) Array of guides (b) Curved guides

Figure 2: The two configuration possible for guides. From examples.example_guides_z()

E(0) = exp
(
−(x− x0

w0
)2
)

(2)

Noes that, like the guide, the offset is done by rolling the array and not by computing the
x− x0 value. This allow to compute one beam and to clone it for any offset needed. But, this
choice forced the beam to exist inside the windows and to have the left values coming from the
right side if a offset is set. The good side is that the beam can be positioned relatively to the
guide even when the guide exceed the windows and come back in the other side. Such cases
should not exist but at least it is taken into account.

1.4.2 Mode based

The bpm.mode_light() compute a beam based on the chosen propagation mode for a planar
waveguide (if it exists). If the chosen guide is Gaussian, the mode will not be adapted because
the theory is based on a planar waveguide.

The theory of guided optic ([1] p9) give us the mode shape define as below.

For the m mode in the core ∀x ∈
[
−W

2 ,
W
2

]
:

E(x) = cos(hmx) even modes (3)
E(x) = sin(hmx) odd modes (4)

For the m mode in the cladding ∀x 6∈
[
−W

2 ,
W
2

]
:

E(x) = cos
(
hm

W

2

)
exp

(
−γm|x−

W

2 |
)

even modes (5)

E(x) = −sin
(
hm

W

2

)
exp

(
γm(x+ W

2)
)

odd modes x<-W/2 (6)

E(x) = sin
(
hm

W

2

)
exp

(
−γm(x− W

2)
)

odd modes x>W/2 (7)

The mode_determ method resolves a transcendental equation which allows to determine all
the constants.

Beampy user guide page 7/16

1 BPM MODULE 1.5 Compute

15 10 5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

Example for the gaussian beam
field
intensity
1/2
fwhm/2
1/e
1/e2

w0

Figure 3: fwhm of the beam defined for the intensity, w0 at 1/e for the field and at 1/e2 for the
intensity. From examples.example_gaussian_beam().

1.5 Compute
The main_compute method take into account the refractive index modulation, the free propa-
gation over dz and eventual looses or Kerr effects.

After having tested in great detail the best decomposition to implement the BPM prin-
ciple (see the function examples.example_stability() and also examples.example_kerr()), the
following one has been selected.

Each step dz=dist_z is decomposed into three intermediate steps:
- A free space propagation over dz/2
- The index modulation perturbation over dz (lens)
- A free space propagation over dz/2
This decomposition is the most stable one compared to the decomposition dz+lens or

lens+dz. When using the dz+lens notation, "+" must be interpreted not as a addition but
as the order of operations.

One other idea was to conserve the dz/2+lens+dz/2 decomposition but only for the last
field by doing dz/2 + loop over lens+dz then final lens+dz/2. But it has been abandon because
each intermediate field would have been approximated by dz/2 and also because if a Kerr effect
is present,the loop must come back to lens+dz/2 due to the corrective loop implemented. The
algorithm is about 1.3 times slower than the former method but this choice increases the results
precision.

1.6 Kerr
The Kerr effect used in Beampy is the optical Kerr (AC Kerr) and not the Kerr electro-optic
effect (DC Kerr).

This effect appeared in χ3 materials such as Niobate Lithium or any non-symmetrical ma-
terials. And become significant when a powerful optical field go through the material.

The optical beam changes the refractive index of the material:

page 8/16 Beampy user guide

1 BPM MODULE 1.7 looses

E

Loop 1 : n(E)

i

i
E

i+1

i+1

no Kerr

E
i

E

i+1

i+1

 Kerr

dz/2 lens dz/2 dz/2 lens dz/2

i+1

dz/2 lens dz/2

0

0

E
i

E

i+1

i+1
1

Loop 2 : n(E)i+1

dz/2 lens dz/2

1

E

i

i
E

i+1

i+1

E

i

i
E

i+1

i+1

 Kerr

dz/2 lens dz/2

i+1

0

0

i

...

...

... ...

Figure 4: Kerr effect implementation. Inspired by optiwave.com

n = n0 + 3χ(3)

8n0
|E|2 = n0 + n2I (8)

With n0 the initial refractive index, χ3 the third term of the electric susceptibility tensor
and E the beam field.

Like mention is the compute section, several methods were consider to obtain the more
stable results. The results can be found in the example section of the online documentation or
by executing the examples.example_kerr() function.

The stable solution consist of computing the propagation following the dz/2+lens+dz/2
decomposition.

A simple implementation of the Kerr effect can be describe as follow: dz/2+dn(E)+lens+dz/2.
The problem with this solution is that the refractive index is changed by the previous field

or by a half propagated field.
The Beampy implementation is described on the figure 4.
A first step propagation is done without the Kerr effect, then the resulting field is used

to calculate the new refractive index, then the propagation step is done again with this new
refractive index.

The resulting field could be directly used but, in some cases (high power), the result can be
improved by using loops to have a converging solution (figure 5).

1.7 looses

The absorption method applies a loss over x from lost_beg to lost_end at a given z position
for a given field. Those variables can be multidimensional to have several areas. And, the
losses_position method return the area define relatively to guides so, the loss follows the guide
over z in the case of curved guides.

Beampy user guide page 9/16

https://optiwave.com/optibpm-manuals/bpm-non-linear-bpm-algorithm/

2 USER INTERFACE MODULE

Figure 5: Impact of loops for the Kerr effect

2 User interface module

2.1 UserInterface class summary

1 ca l cu la t e_gu ide (topology=’ array ’)
2 c a l c u l a t e _ l i g h t ()
3 ca l cu la te_propagat ion ()
4 addmpl (tab=’ guide ’ , pow_index=0)
5 rmmpl(tab , pow_index=0)
6 save_guide ()
7 get_guide ()
8 save_l ight ()
9 ge t_ l i ght ()

10 save_compute ()
11 get_compute ()
12 on_cl ick_array ()
13 on_click_curved ()
14 on_c l i ck_l ight ()
15 on_click_compute ()
16 on_c l i ck_create_l ight ()
17 on_c l i ck_de l e te_l ight ()
18 open_file_name ()
19 open_f i l e (f i l ename)
20 save_quick ()
21 save_file_name ()
22 s a v e _ f i l e ()

Code Listing 2: MainApp methods from user_interface.py

page 10/16 Beampy user guide

2 USER INTERFACE MODULE 2.1 UserInterface class summary

(a) Array of guides (b) Curved guide

Figure 6: Different guide configuration

Figure 7: Compute interface

Beampy user guide page 11/16

3 VALIDATION 2.2 calculate guide

(a) Array of guides (b) Curved guide

Figure 8: Compute interface

2.2 calculate guide

2.3 calculate light

2.4 calculate propagation

2.5 Add plot

2.6 Open and save file

2.7 Create beam

3 Validation
This section contain the comparison of Beampy’s results to known results.

3.1 Free space
This demonstration is done using the example_free_propag() function of the Beampy.examples
module.

The free propagation of a Gaussian beam increases its waist w according to:

w(z) = w0

√
1 +

(
z

z0

)2
(9)

With w(z) = FWHM(z)√
2 ln 2 and z0 the Rayleigh length:

z0 = πw2
0n

λ
(10)

For n=1, λ=1.5 µm, z=10 000 µm, x=1000 µm, dx=0.1 µm and fwhm=20 µm:
Beampy return a final fwhm=281.47 µm.
The theory returns a fwhm=281.60 µm.
Beampy have a relative error of 0.05 % compared to the theory.

page 12/16 Beampy user guide

4 APPROXIMATIONS 3.2 Coupled mode theory

If we take smaller x step, we can get a better results, for example with dx=0.01 µm:
Beampy return a final fwhm=281.601 µm.
The theory returns a fwhm=281.599 µm.
Beampy have a relative error of 0.0009 % compared to the theory.
We can conclude from this result that the free propagation include in Beampy is correct

when using small x step but can give false results if the step is too large.

3.2 Coupled mode theory
From one of my internship report [2].

Two guides:

Il(z) = I0 cos
2(Cz) (11)

Ir(z) = I0 sin
2(Cz) (12)

N guides:

an(z) = in a0 Jn(2Cz) (13)
With C:

C = 2h2γ2e−γs

β(Wγ + 2)(h2 + γ2) (14)

We can observed on the figure 9b that the light in second guide has a first peak at 0.31.
The First order Bessel function has a first peak at 0.58, so the squared Bessel function has a
first peak at 0.582 = 0.34 (figure 10).

Knowing the approximations (the power measurement is always under estimate between
guide due to the recovering of lights, the Gaussian beam is not well adapted to have a perfect
injection), this results can be consider good enough.

3.3 Kerr effect

4 Approximations

4.1 In Beampy
− The x length is define with a dist_x less than expected to have a even number (see 1.2).

4.2 Not in Beampy
− Changing the code to have dz/2, loop[lens, dz], then final lens and dz/2 instead of our

choice loop[dz/2, lens, dz/2] reduces the computation time by 1.3. The irradiance power
become define for z = 0, dz+dz/2, 2*dz+dz/2, n*dz instead of z = 0, dz, 2*dz, n*dz.
The last loop of the propagation is done over dz/2 to have a correct last value. So, with
this approximation, the first and last power will be correct but all the powers between
propagates over a extra dz/2.

− The kerr effect could be speed up drastically using the dz+lens choice because the dn
variation depend in the beam intensity thus, independent of the phase. So no corrective
loops should be used. However, in some extreme cases, this approximation diverge from
the stable solution.

Beampy user guide page 13/16

4 APPROXIMATIONS 4.2 Not in Beampy

(a) Two guides

(b) 11 guides

Figure 9: Power in guides

1.0

0.8

0.6

0.4

0.2

0.0

−0.2

−0.4

0 5 10 15 20

J (x)0
J (x)1
J (x)2

x

Figure 10: Bessel function. Source: wikipedia Bessel function

page 14/16 Beampy user guide

5 BEAM PROPAGATION METHOD (BPM)

z

z
2

z
2

Propagation linéaire

x

∆

∆

∆z

D̂

D̂

Propagation linéaire

Perturbation

N̂

Figure 11: BPM principle [1]

5 Beam Propagation Method (BPM)
The Beam Propagation Method (p165 [1]) is a method that resolve the Helmoltz equation by
using perturbations as a phase correction. The optical field propagation is decomposed into a
free space propagation and a phase variation due to the perturbation. The perturbation can
be the refractive index modulation (guides) or the Kerr effect (creation of guides).

This method necessitate some approximations:

• paraxial, beam with small angle

• small refractive index variation, smooth slope for the edges of guides

• small refractive index variation, core refractive index close to the cladding one

• slowly varying envelope, slow spacial variations compare to the wavelength and time
variations.

The following demonstration is mostly based on Nicolas Fressengeas’s course: "The Beam
Propagation Method"

Solution to the Helmoltz equation:

E(z + dz) = exp

−idz
√

∆⊥ + ω2

c2 n
2

E(z) (15)

slowly varying envelope approximation ∆⊥ � ω
c
n:√

∆⊥ + ω2

c2 n
2 ≈ ∆⊥√

∆⊥ + ω2

c2 n2 + ω
c
n

+ ω

c
n (16)

Small index variation approximation:√
∆⊥ + ω2

c2 n
2 ≈ ∆⊥√

∆⊥ + ω2

c2 n2
0 + ω

c
n0

+ ω

c
n = ∆⊥√

∆⊥ + k2 + k
+ k

n

n0
(17)

Thus,

E(z + dz) = exp

(
−idz

[
∆⊥√

∆⊥ + k2 + k
+ k(n

n0
− 1)

])
E(z) (18)

Beampy user guide page 15/16

REFERENCES REFERENCES

With the linear and free propagation operator:

D̂ = ∆⊥√
∆⊥ + k2 + k

(19)

And the perturbation operator caused by the refractive index modulation:

N̂ = k(n
n0
− 1) (20)

The usual BPM approximation is to separate the D̂ + N̂ operation into D̂/2 + N̂ + D̂/2.
This would not normally be acceptable because the operators doesn’t commute but, if the dz
step is small enough, the operators can be decorrelated.

Finally we got the linear propagation in the Fourier space:

Ẽ(z + dz) = exp

(
−idz2

2πν2n0

k

)
Ẽ(z) (21)

And the index modulation:

E(z + dz) = exp (ikdz∆n)E(z) (22)

However, the linear propagation was not implemented like described above but with the
follow equation, which is more stable:

Ẽ(z + dz) = exp

−idz2
 2πν2√

(no

λ
)2 − ν2 + no

λ

 Ẽ(z) (23)

References
[1] C. Ciret, Structures de guides d’onde photo-induits et analogies quantiques. PhD thesis,

Université de Lorraine, Metz, Sept. 2013.

[2] J. Peltier, “Etude de la diffraction discrète dans un réseau de guides activé électriquement,”
tech. rep., Université de Lorraine, Metz, June 2018.

page 16/16 Beampy user guide

	bpm module
	Bpm class summary
	Windows variables
	Guides
	Beams
	Gaussian
	Mode based

	Compute
	Kerr
	looses

	User interface module
	UserInterface class summary
	calculate guide
	calculate light
	calculate propagation
	Add plot
	Open and save file
	Create beam

	Validation
	Free space
	Coupled mode theory
	Kerr effect

	Approximations
	In Beampy
	Not in Beampy

	Beam Propagation Method (BPM)

